Smart Charging Is One Of The Innovations

The average car runs on fossil fuels, but growing pressure for climate action, falling battery costs, and concerns about air pollution in cities, has given life to the once “over-priced” and neglected electric vehicle.

With many new electric vehicles (EV) now out-performing their fossil-powered counterparts’ capabilities on the road, energy planners are looking to bring innovation to the garage — 95% of a car’s time is spent parked.

The result is that with careful planning and the right infrastructure in place, parked and plugged-in EVs could be the battery banks of the future, stabilising electric grids powered by wind and solar energy.

An electric car charging station powered by solar PV

“Electric Vehicles (EVs) at scale can create vast electricity storage capacity, but if everyone simultaneously charges their cars in the morning or evening, electricity networks can become stressed. The timing of charging is therefore critical. ‘Smart charging’, which both charges vehicles and supports the grid, unlocks a virtuous circle in which renewable energy makes transport cleaner and EVs support larger shares of renewables,” says Dolf Gielen, Director of IRENA’s Innovation and Technology Centre.

Looking at real examples, a new report from IRENA, Innovation Outlook: smart charging for electric vehicles, guides countries on how to exploit the complementarily potential between renewable electricity and EVs. It provides a guideline for policymakers on implementing an energy transition strategy that makes the most out of EVs.

Smart implementation

Smart charging means adapting the charging cycle of EVs to both the conditions of the power system and the needs of vehicle users. “Smart charging is one of the innovations IRENA is closely following that presents multiple benefits. By decreasing EV-charging-stress on the grid, smart charging can make electricity systems more flexible for renewable energy integration, and provides a low-carbon electricity option to address the transport sector, all while meeting mobility needs,” says Gielen.

The rapid uptake of EVs around the world, means smart charging could save billions of dollars in grid investments needed to meet EV loads in a controlled manner. For example, the distribution system operator in Hamburg — Stromnetz Hamburg — is testing a smart charging system that uses digital technologies that control the charging of vehicles based on systems and customers’ requirements. When fully implemented, this would reduce the need for grid investments in the city due to the load of charging EVs by 90%.Driving a Smarter Future

IRENA’s analysis indicates that if most of the passenger vehicles sold from 2040 onwards were electric, more than 1 billion EVs could be on the road by 2050 — up from around 6 million today —dwarfing stationary battery capacity. Projections suggest that in 2050, around 14 terra-watt hours (TWh) of EV batteries could be available to provide grid services, compared to just 9 TWh of stationary batteries.

The implementation of smart charging systems ranges from basic to advanced, says Francisco Boshell, an IRENA analyst monitoring the development and implementation of EV strategies around the world. “The simplest approaches encourage consumers to defer their charging from peak to off-peak periods. More advanced approaches using digital technology (PDF), such as ‘direct control mechanisms’ may in the near future serve the electricity system by delivering close-to real-time energy balancing and ancillary services,” explains Boshell.

Leave a Comment